
Technical Paper

ABSTRACT—This document contains information on the
changes required to support dual images in the bootloader
level. Dual image is one workable idea to provide alternating
firmware between two firmware partitions. When the current
firmware is broken, we reset the kernel entry and boot it up.
Most importantly, we do the firmware upgrade in the inactive
partition. If there is nothing wrong with it, the upgrade process
will swap the kernel entry. Therefore, we can keep one bootable
firmware in our device all the time.

I - Introduction

The bootloader does some low-level hardware initialization,
such as processor, memory, ethernet, flash, PCI, UART, and so
on. After setting system configurations, the bootloader loads
the kernel and passes startup information including serial port
speeds, clock rates, the table of partitions and other hardware
configuration data.

When the kernel is loaded, it configures the hardware, allocates
the memory, loads the drivers, inserts the modules, mounts the
root filesystem, and runs the pre-init processes. The final step is
spawning the init process, the first user space process. The three
types on the ARM-based OpenWRT are NOR-only, NAND-only and
NOR plus-NAND.

ll - Procedure

I. NOR flash only

1. Bootloader : When the power on, the bootloader will
check the dual image flag, “active_fw”

	 1.1. Append additional partitions to mtdparts :

	 kernel_1 and rootfs_1

	 1.2. Load the target kernel to the memory

	 1.3. Assign a active root filesystem partition by setting

	 the bootargs.

	 1.3.1. If “active_fw=0” => root=rootfs

	 1.3.2. If “active_fw=1” => root=rootfs_1

	 1.4. If boot kernel fail, swap active firmware partition
2. Kernel Space : parses the bootargs assigned by bootloader,
and mount the root filesystem.
3. User space : when system upgrade

	 3.1. If “active_fw=1” =>

	 3.1.1. flash kernel and rootfs

	 3.1.2. set active_fw=0

	 3.1.3. reboot

	 3.2. If “active_fw=0” =>

Dual Image on EnGenius Designed ARM-based Product Families
Chin-Ting Chu | Software Engineer

NOR

boot loader

FW0

FW1

NAND

boot loader

FW0

FW1

NOR

boot loader

NAND

FW0

FW1

Fig.2. NAND only Fig.1. NOR only Fig.3. NOR and NAND

NOR

boot loader

MEMORY

kernel

FW0
kernel

active_fw: 0

mount rootfs_0

rootfs
FW1

Fig.4. Use the 1st firmware – NOR only

Technical Paper

A. NOR flash only

1. Create two firmware partitions

	 1.1. modify the nor-partition.xml to tell the bootloader the 	
	 new partitions info

	 1.2. modify the sys_flash_map.mk to tell the kernel mtd 	
	 partition table

2. Dual image flag

	 2.1. Modify board.c to add “active_fw” to uboot de-fault env

	 2.2. Modify the cmd_bootipq.c to swap the boot args(root= 	
	 rootfs or root= rootfs_1).

3. System upgrade

	 3.1. check “active_fw” and flash the target firmware 		
	 partition@ipq806x.sh

	 3.1.1. “active_fw=1” => flash kernel and rootfs

	 3.1.2. “active_fw=0” => flash kernel_1 and rootfs_1

4. Auto recovery

	 4.1. Modify the board.c to make sure the uboot catch-es 	
	 the return value from the boot function

B. NAND flash only

The procedure is the same as ‘NOR flash only’.

	 3.2.1. flash kernel_1 and rootfs_1

	 3.2.2. set active_fw=0

	 3.2.3. reboot

II.. NAND flash only
The procedure is the same as ‘NOR flash only’.

III.. NOR + NAND

lll - Implement

MTD partitions: two equal parts for two firm-wares

II. Dual image flag: set a active firmware partition

NAND

FW0

kernel 1

roots 1

NOR

boot loader

MEMORY

kernel 1

1
2

Fig.5. Use the 2nd firmware – NOR+NAND

1. Bootloader : When the power on, the bootloader will check the
dual image flag, “active_fw”

	 1.1. Append two NAND partitions named rootfs and fs2

	 1.1.1 If “active_fw=0” =>

The upper half of NAND is named rootfs and the another one is
named fs2.

	 1.1.2 If “active_fw=1” =>

The upper half of NAND is named fs2 and the another one is
named rootfs.

	 1.2. Load the target kernel to the memory

	 1.3. If boot kernel fail, swap active firmware partition
2. Kernel Space : Under the NOR+NAND structure, we always use
the partition named rootfs as the root filesystem.
3. User space : when system upgrade
The procedure is the same as ‘NOR flash only’.

FIRMWARE 1

FIRMWARE 2

[1.439237] 0x000000000000-0x000000020000 : "SBL1"
[1.446547] 0x000000020000-0x000000040000 : "MIBIB"
[1.452827] 0x000000040000-0x000000080000 : "SBL2"
[1.459169] 0x000000080000-0x000000100000 : "SBL3"
[1.465823] 0x000000100000-0x000000110000 : "DDRCONFIG"
[1.472446] 0x000000110000-0x000000120000 : "SSD"
[1.478225] 0x000000120000-0x0000001a0000 : "TZ"
[1.483880] 0x0000001a0000-0x000000220000 : "RPM"
[1.489721] 0x000000220000-0x0000002a0000 : "APPSBL"
[1.495813] 0x0000002a0000-0x0000002e0000 : "APPSBLENV"
[1.502155] 0x0000002e0000-0x000000320000 : "ART"
[1.507966] 0x000000320000-0x000000520000 : "kernel"
[1.513995] 0x000000520000-0x000001020000 : "rootfs"
[1.520181] mtd: partition "rootfs" set to be root filesystem
[1.525335] mtd: partition "rootfs_data" created automatically, ofs=C90000, len=390000
[1.532927] 0x000000c90000-0x000001020000 : "rootfs_data"
[1.540549] 0x000001020000-0x000001220000 : "kernel_1"
[1.546766] 0x000001220000-0x000001d20000 : "rootfs_1"

Fig.9. MTD partition table - NOR only

III. System upgrade: Always upgrade the inactive firmware partition

IV. Auto recovery: If the uboot finds the boot fail from this firmware
partition, active the another firmware partition.

Technical Paper

C. NOR + NAND

1. Create two firmware partitions

	 1.1. Modify bootipq.c to add a partitions named fs2

	 1.2. Modify bootm.c to pass the atags partition info. to 	
	 kernel

2. Dual image flag

	 2.1. add “active_fw” to uboot default env

3. System upgrade

	 3.1. check “active_fw” and flash the target firmware 		

	 partition@ipq806x.sh

	 3.1.1. Flash the fs2 partition

4. Auto recovery

	 4.1. Modify the board.c to make sure the uboot catch-es 	
	 the return value from the boot function

REFERENCES

1. https://www.ntppool.org

2. https://developers.google.com/time/

EnGenius Technologies | 1580 Scenic Ave. Costa Mesa, CA 92626

Email: partners@engeniustech.com | Website: engeniustech.com

Version: 1.00 03/2020

Features and specifications subject to change without notice. Trademarks and registered trademarks
are the property of their respective owners. For United States of America: Copyright ©2020 EnGenius
Technologies, Inc. All rights reserved. Maximum data rates are based on IEEE 802.11 standards.
Actual throughput and range may vary depending on distance between devices or traffic and
bandwidth load in the network.

FIRMWARE 1

[1.420524] Creating 2 MTD partitions on "msm_nand":
[1.424679] 0x000000000000-0x000004000000 : "rootfs"
[1.579318] mtd: partition "rootfs" set to be root filesystem
[1.584879] split_squashfs: no squashfs found in "msm_nand"
[1.589659] 0x000004000000-0x000008000000 : "fs2"
[1.695095] ata1: SATA link down (SStatus 0 SControl 300)
[1.749859] m25p80 spi5.0: found s25fl256s1, expected s25fl512s
[1.754764] m25p80 spi5.0: s25fl256s1 (32768 Kbytes)
[1.760387] Creating 11 MTD partitions on "m25p80":
[1.764573] 0x000000000000-0x000000020000 : "SBL1"
[1.771977] 0x000000020000-0x000000040000 : "MIBIB"
[1.778381] 0x000000040000-0x000000080000 : "SBL2"
[1.784661] 0x000000080000-0x000000100000 : "SBL3"
[1.790940] 0x000000100000-0x000000110000 : "DDRCONFIG"
[1.797250] 0x000000110000-0x000000120000 : "SSD"
[1.802999] 0x000000120000-0x0000001a0000 : "TZ"
[1.808716] 0x0000001a0000-0x000000220000 : "RPM"
[1.814495] 0x000000220000-0x0000002a0000 : "APPSBL"
[1.820618] 0x0000002a0000-0x0000002e0000 : "APPSBLENV"
[1.827054] 0x0000002e0000-0x000000320000 : "ART"

Fig.11. MTD partition table when active_fw=0 - NOR+NAND

